Define your data model once. Get migrations, CRUD endpoints, and API docs automatically.
SchemaForge is a Rust toolkit that turns human-readable schema definitions into fully operational backends -- no recompilation required. Write a schema file (or describe what you need in plain English), and SchemaForge generates database tables, CRUD API endpoints, migrations, authorization policies, and API documentation at runtime.
schema Contact {
name: text(max: 255) required indexed
email: text(max: 512) required indexed
phone: text
priority: enum("low", "medium", "high") default("medium")
company: -> Company
tags: text[]
notes: richtext
is_active: boolean default(true)
}
From this single file, SchemaForge generates:
- Database tables with type enforcement and constraints (SurrealDB)
- REST API routes with input validation for every entity
- Migration plans that diff against your existing schema
- Cedar authorization policies for access control
- OpenAPI specifications that stay in sync with your schemas
- Why SchemaForge
- Quick Start
- Architecture
- SchemaDSL Reference
- CLI Reference
- AI Agent
- Programmatic Usage
- Project Status
- Design Decisions
- Contributing
Traditional backend development requires you to define your model in code, write a migration, build CRUD handlers, add validation, wire up authorization, and generate API docs -- separately, for every entity. When a schema changes, you repeat the cycle.
SchemaForge collapses that workflow. One schema file is the single source of truth for your entire entity lifecycle. Change the schema, and everything downstream updates automatically: migrations are computed by diffing versions, routes adapt, validation adjusts, and the OpenAPI spec regenerates.
The AI agent takes this further. Describe what you need in plain English, and an LLM generates the schema, validates it through the tool execution loop (self-correcting any errors), and applies it to your database -- all without writing DSL by hand.
- Rust 1.75+ (2021 edition)
- SurrealDB 2.x (for backend operations; embedded mode works for development)
# Install the CLI
cargo install schema-forge-cli
# Scaffold a new project
schema-forge init my-platform
cd my-platformThis creates:
my-platform/
├── Cargo.toml
├── config.toml
├── acton-ai.toml
├── schemas/
├── policies/
│ ├── generated/
│ └── custom/
└── src/
└── main.rs
Create a file at schemas/crm.schema:
@version(1)
@display("name")
schema Company {
name: text(max: 255) required indexed
website: text(max: 500)
industry: enum("fintech", "saas", "healthcare", "other")
employee_count: integer(min: 1)
address: composite {
street: text
city: text required
state: text
zip: text
country: text required
}
}
@version(1)
@display("email")
schema Contact {
first_name: text(max: 100) required
last_name: text(max: 100) required
email: text(max: 255) required indexed
phone: text(max: 20)
status: enum("active", "inactive", "lead") default("lead")
company: -> Company
tags: text[]
notes: richtext
}
# Parse and validate your schemas
schema-forge parse schemas/
# Apply schemas to SurrealDB (creates tables, fields, indexes)
schema-forge apply schemas/ --db-url ws://localhost:8000
# Preview migration steps without applying
schema-forge apply schemas/ --dry-run
# Start the API server with dynamic CRUD routes
schema-forge serve --schemas schemas/ --db-url ws://localhost:8000 --db-ns app --db-name mainOnce served, every registered schema automatically gets REST endpoints:
POST /forge/entities/contact Create a contact
GET /forge/entities/contact List/query contacts
GET /forge/entities/contact/:id Get a contact by ID
PUT /forge/entities/contact/:id Update a contact
DELETE /forge/entities/contact/:id Delete a contact
GET /forge/schemas List all schemas
GET /forge/openapi.json Dynamic OpenAPI specification
Instead of writing DSL by hand, describe what you need:
# One-shot generation
schema-forge generate "A ticketing system with tickets linked to contacts,
priority levels, status tracking, and assignment" --batch -o schemas/ticketing.schema
# Interactive conversational mode
schema-forge generateThe AI agent calls list_schemas to see what already exists, generates DSL, calls validate_schema to check correctness, fixes any errors automatically, and applies the result after confirmation. No custom retry logic -- the LLM's tool execution loop handles self-correction naturally.
SchemaForge is a Cargo workspace of seven composable crates. Each layer depends only on the layers below it.
┌─────────────────┐
"I need a CRM..." ─────>│ schema-forge-ai │ LLM agent + tools
└────────┬────────┘
│ generates DSL
┌────────▼────────┐
.schema files ──────────>│ schema-forge-dsl │ lexer + parser + printer
└────────┬────────┘
│ produces SchemaDefinition
┌────────▼────────┐
│schema-forge-core │ types, validation, migration, query IR
└────────┬────────┘
│ implements traits
┌─────────────────┐ ┌────────▼────────┐
│schema-forge-acton│──────>│schema-forge- │ SchemaBackend + EntityStore traits
│ HTTP routes │ │backend │
└─────────────────┘ └────────┬────────┘
│
┌─────────────────┐ ┌────────▼────────┐
│ schema-forge-cli│ │schema-forge- │ SurrealQL codegen + CRUD
│ commands │──────>│surrealdb │
└─────────────────┘ └─────────────────┘
| Crate | Purpose |
|---|---|
schema-forge-core |
Runtime type system, validation, migration planner, query IR. Zero I/O, pure logic. |
schema-forge-dsl |
Lexer (logos) and recursive descent parser for .schema files, plus a printer for round-trip fidelity. |
schema-forge-backend |
SchemaBackend and EntityStore trait definitions. Storage-agnostic interface. |
schema-forge-surrealdb |
SurrealDB implementation: MigrationStep to SurrealQL compilation, entity CRUD, query translation. |
schema-forge-acton |
Axum-based HTTP layer: dynamic CRUD routes, Cedar policy generation, OpenAPI spec, schema registry. |
schema-forge-ai |
LLM agent integration via acton-ai: tool-based schema generation, validation, and application. |
schema-forge-cli |
Command-line interface: init, parse, apply, migrate, generate, serve, inspect, export, policies. |
The foundational types in schema-forge-core model schemas with validated newtypes:
- SchemaName -- PascalCase identifier (e.g.,
Contact,OrderItem) - FieldName -- snake_case identifier (e.g.,
first_name,email_address) - SchemaVersion -- Positive integer, auto-incremented
- SchemaId -- TypeID-based unique identifier (UUIDv7)
- FieldType -- The complete type system:
Text,RichText,Integer,Float,Boolean,DateTime,Enum,Json,Relation,Array,Composite - FieldModifier --
Required,Indexed,Default(value)
All types derive Serialize/Deserialize and use #[non_exhaustive] for forward compatibility.
The DiffEngine compares two schema versions and produces a MigrationPlan -- an ordered list of atomic MigrationStep operations:
| Step | Safety Level |
|---|---|
CreateSchema, AddField, AddIndex, AddRelation |
Safe |
RenameField, ChangeType, AddRequired |
Requires confirmation |
DropSchema, RemoveField, RemoveRelation |
Destructive |
Each step carries a safety classification. The CLI shows the migration plan and prompts for confirmation before executing destructive steps.
Type changes include automatic value transforms where possible (integer to float, any scalar to string) and fall back to SetNull for incompatible conversions.
A storage-agnostic Filter enum compiles to native backend queries. It supports comparison operators (Eq, Ne, Gt, Gte, Lt, Lte), string operations (Contains, StartsWith), set membership (In), and logical combinators (And, Or, Not).
FieldPath enables dotted notation for relation traversal. The query company.industry = "fintech" traverses the company relation and filters on the industry field -- translated to native SurrealDB dot-notation without JOINs.
SurrealDB is the primary backend. Its data model aligns naturally:
| SchemaForge Concept | SurrealDB Equivalent |
|---|---|
SchemaDefinition |
DEFINE TABLE + DEFINE FIELD statements |
FieldType::Text |
TYPE string with assertion on length |
FieldType::Enum |
TYPE string with ASSERT $value IN [...] |
FieldType::Relation (one) |
TYPE option<record<Target>> |
FieldType::Relation (many) |
TYPE option<array<record<Target>>> |
FieldType::Composite |
TYPE object with nested DEFINE FIELD |
FieldType::Json |
FLEXIBLE TYPE object |
| Relation traversal | Native dot-notation (no JOINs) |
The embedded SurrealDB mode (kv-mem) enables development and testing without running a separate database process.
| Type | Syntax | Constraints |
|---|---|---|
| Text | text or text(max: 255) |
min, max character length |
| Rich Text | richtext |
min, max character length |
| Integer | integer or integer(min: 0, max: 100) |
min, max bounds |
| Float | float or float(precision: 2) |
precision (decimal places) |
| Boolean | boolean |
None |
| DateTime | datetime |
None |
| Enum | enum("a", "b", "c") |
At least 1 variant, no duplicates |
| Relation (one) | -> SchemaName |
Target must be PascalCase |
| Relation (many) | -> SchemaName[] |
Target must be PascalCase |
| Array | text[], integer[], etc. |
Suffix [] on any field type |
| Composite | composite { field: type ... } |
Nested field definitions |
| JSON | json |
Arbitrary unstructured data |
| Modifier | Effect |
|---|---|
required |
Field must have a non-null value |
indexed |
Field is indexed for fast lookups |
default(value) |
Sets a default when the field is omitted |
Annotations appear before the schema keyword:
@version(2)
@display("email")
schema Contact { ... }
@version(N)-- Declares the schema version (positive integer).@display("field_name")-- Identifies the display field for the schema.
- Schema names must be PascalCase:
Contact,OrderItem,UserProfile - Field names must be snake_case:
first_name,email_address,created_at
program = { schema_def } ;
schema_def = { annotation } "schema" PASCAL_IDENT "{" { field_def } "}" ;
field_def = SNAKE_IDENT ":" field_type { modifier } ;
field_type = primitive_type [ "[]" ]
| "->" PASCAL_IDENT [ "[]" ]
| "composite" "{" { field_def } "}"
;
primitive_type = "text" [ "(" text_params ")" ]
| "richtext" [ "(" text_params ")" ]
| "integer" [ "(" int_params ")" ]
| "float" [ "(" float_params ")" ]
| "boolean"
| "datetime"
| "enum" "(" enum_variants ")"
| "json"
;
modifier = "required" | "indexed" | "default" "(" value ")" ;
annotation = "@version" "(" INTEGER ")" | "@display" "(" STRING ")" ;schema-forge <command> [options]
| Command | Description |
|---|---|
init <name> |
Scaffold a new project (--template minimal|full|api-only) |
parse <paths> |
Validate .schema files and show diagnostics (--print for round-trip output) |
apply <paths> |
Apply schemas to the backend (--dry-run, --force, --with-policies) |
migrate <paths> |
Show migration plan (--execute to apply, --schema for a specific schema) |
generate [desc] |
Generate schemas from natural language (--batch, --provider, --model) |
serve |
Start HTTP server with dynamic routes (--host, --port, --watch) |
inspect [schema] |
Show registered schemas and details (--detail, --counts) |
export openapi |
Export OpenAPI spec (-o file) |
policies list |
List Cedar authorization policies |
policies regenerate |
Regenerate Cedar policy templates (--force) |
completions <shell> |
Generate shell completions (bash, zsh, fish, powershell, elvish) |
| Option | Description |
|---|---|
-c, --config <path> |
Configuration file path (env: SCHEMA_FORGE_CONFIG) |
--format human|json|plain |
Output format (default: human) |
-v, --verbose |
Increase verbosity (-v, -vv, -vvv) |
-q, --quiet |
Suppress non-error output |
--no-color |
Disable colored output (env: NO_COLOR) |
--db-url <url> |
SurrealDB connection URL (env: SCHEMA_FORGE_DB_URL) |
--db-ns <name> |
SurrealDB namespace (env: SCHEMA_FORGE_DB_NS) |
--db-name <name> |
SurrealDB database name (env: SCHEMA_FORGE_DB_NAME) |
The AI agent uses acton-ai to connect an LLM to SchemaForge through four custom tools:
| Tool | Purpose |
|---|---|
validate_schema |
Parse and validate DSL; returns structured errors for self-correction |
list_schemas |
Show existing schemas as DSL for context |
apply_schema |
Register schemas and execute migrations (supports dry-run) |
generate_cedar |
Create Cedar authorization policy templates |
The agent workflow is straightforward: the LLM generates DSL, calls validate_schema, reads any errors, fixes the DSL, and validates again. This self-correction loop is not custom retry logic -- it is the natural behavior of an LLM tool execution loop. The grammar is small enough that even 7B parameter local models produce valid schemas consistently.
Configure AI providers in acton-ai.toml:
default_provider = "ollama"
[providers.ollama]
type = "ollama"
model = "qwen2.5:7b"
base_url = "http://localhost:11434/v1"
timeout_secs = 120
max_tokens = 4096
temperature = 0.3
[providers.cloud]
type = "anthropic"
model = "claude-sonnet-4-20250514"
api_key_env = "ANTHROPIC_API_KEY"Use --provider to select a provider at generation time, or let auto pick from the configuration.
Add the crates you need to your Cargo.toml:
[dependencies]
schema-forge-core = "0.2"
schema-forge-dsl = "0.1"
schema-forge-backend = "0.1"
schema-forge-surrealdb = "0.2"
schema-forge-acton = "0.1"use schema_forge_dsl::{parse, print};
let source = r#"
schema Contact {
name: text(max: 255) required
email: text required indexed
active: boolean default(true)
}
"#;
let schemas = parse(source).expect("parse failed");
assert_eq!(schemas[0].name.as_str(), "Contact");
// Round-trip: parse -> print -> parse produces equivalent AST
let dsl_text = print(&schemas[0]);use schema_forge_acton::SchemaForgeExtension;
use schema_forge_surrealdb::SurrealBackend;
let backend = SurrealBackend::connect("ws://localhost:8000").await?;
let extension = SchemaForgeExtension::builder()
.with_backend(backend)
.build()
.await?;
// Register forge routes under /forge on any axum Router
let app = extension.register_routes(axum::Router::new());use schema_forge_core::migration::DiffEngine;
// Compare two schema versions
let plan = DiffEngine::diff(&old_schema, &new_schema);
println!("{}", plan);
// Migration plan for 'Contact' (3 steps, safe)
// 1. ADD field 'phone' [safe]
// 2. ADD field 'status' [safe]
// 3. ADD INDEX on 'email' [safe]
if plan.has_destructive_steps() {
// Prompt for confirmation before applying
}SchemaForge is under active development. All seven crates compile and pass 674 tests across the workspace (unit, integration, property-based, and round-trip tests).
| Crate | Version | Tests |
|---|---|---|
schema-forge-core |
0.2.0 | 209 |
schema-forge-dsl |
0.1.0 | 108 |
schema-forge-backend |
0.1.0 | 18 |
schema-forge-surrealdb |
0.2.0 | 47 |
schema-forge-acton |
0.1.0 | 81 |
schema-forge-ai |
0.1.0 | 79 |
schema-forge-cli |
0.2.0 | 132 |
- Full runtime type system with validated newtypes and serde round-trips
- DSL lexer (logos), recursive descent parser, and printer with round-trip fidelity
- Migration engine: schema diffing, safety classification, value transforms
- Storage-agnostic query IR with relation traversal
- SurrealDB backend: DDL codegen, entity CRUD, query translation
- Axum HTTP layer with dynamic CRUD routes and schema management
- Cedar authorization policy generation
- AI agent with tool-based self-correcting schema generation
- CLI with 10 commands, global options, environment variable support, and shell completions
- PostgreSQL and SQLite backends
- OpenAPI spec generation from the schema registry
- Watch mode for hot-reloading schema changes during development
- OpenTelemetry tracing and metrics integration
Why a custom DSL? The grammar is small, git-trackable, and code-reviewable. Its simplicity gives LLMs a high success rate even with small local models. The parser and printer guarantee lossless round-trip conversion.
Why SurrealDB first? SurrealDB's native record links map directly to SchemaForge relations. Its SCHEMAFULL mode mirrors schema validation. Dot-notation query traversal eliminates JOINs. Embedded mode means no external process for development.
Why acton-ai for the agent? The tool execution loop is the self-correction loop. No custom retry logic, no bespoke error handling -- the LLM calls tools, reads results, and adapts. Multi-provider support (local and cloud models) comes free from the configuration.
Why storage-agnostic traits? The SchemaBackend and EntityStore traits use RPITIT (return position impl Trait in trait) for async methods without async-trait. Adding a new backend means implementing two traits -- everything else (parsing, validation, migration planning, query construction, route handling) stays the same.
Contributions are welcome. The project uses standard Rust tooling:
# Run all tests
cargo test --workspace
# Check formatting
cargo fmt --all -- --check
# Run clippy
cargo clippy --workspace -- -D warningsSee the project repository for license information.